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Abstract. We are concerned with central differencing schemes for solving scalar hyperbolic

conservation laws arising in the simulation of multiphase flows in heterogeneous porous media.

We compare the Kurganov-Tadmor (KT) [3] semi-discrete central scheme with the Nessyahu-

Tadmor (NT) [27] central scheme. The KT scheme uses more precise information about the local

speeds of propagation together with integration over nonuniform control volumes, which contain

the Riemann fans. These methods can accurately resolve sharp fronts in the fluid saturations

without introducing spurious oscillations or excessive numerical diffusion. We first discuss the

coupling of these methods with velocity fields approximated by mixed finite elements. Then,

numerical simulations are presented for two-phase, two-dimensional flow problems in multi-scale

heterogeneous petroleum reservoirs. We find the KT scheme to be considerably less diffusive,

particularly in the presence of high permeability flow channels, which lead to strong restrictions

on the time step selection; however, the KT scheme may produce incorrect boundary behavior.
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1 Introduction

We are concerned with high resolution central schemes for solving scalar hyper-

bolic conservation laws arising in the simulation of multiphase flows in multi-

dimensional heterogeneous petroleum reservoirs.

Many of the modern high resolution approximations for nonlinear conserva-

tion laws employ Godunov’s appoach [35] or REA (reconstruct, evolve, average)

algorithm, i.e., the approximate solution is represented by a piecewise polyno-

mial which is Reconstructed from the Evolving cell Averages. The two main

classes of Godunov methods are upwind and central schemes.

The Lax-Friedrichs (LxF) scheme [33] is the canonical first order central

scheme, which is the forerunner of all central differencing schemes. It is based on

piecewise constant approximate solutions. It also enjoys simplicity, i.e., it does

not employ Riemann solvers and characteristic decomposition. Unfortunately

the excessive numerical dissipation in the LxF recipe (of order O((1X)2/1t))

yields poor resolution, which seems to have delayed the development of high

resolution central schemes when compared with the earlier developments of

the high resolution upwind methods. Only in 1990 a second order generaliza-

tion to the LxF scheme was introduced by Nessyahu and Tadmor (NT) [27].

They used a staggered form of the LxF scheme and replaced the first order

piecewise constant solution with a van Leer’s MUSCL-type piecewise linear

second order approximation [8]. The numerical dissipation in this new central

scheme has an amplitude of orderO((1X)4/1t). When applying these methods

to multiphase flows in highly heterogeneous petroleum reservoirs or aquifers we

need to use decreasing time steps as the heterogeneity increases, yielding greater

numerical diffusion. Kurganov and Tadmor (KT) [3] combined ideas from the

construction of the NT scheme with Rusanov’s method [36] to obtain the first

second order central scheme that admits a semi-discrete formulation which is

then solved with an appropriate ODE solver. The resulting scheme has a much

smaller numerical diffusion than the NT scheme. Due to the semi-discrete formu-

lation, this numerical diffusion is independent of the time step used to evolve the

ordinary differential equation. This property guarantees that no extra numerical

diffusion will be added if the time step is forced to decrease. For this reason, the

application of this central scheme results in a new numerical approach to model
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two-phase flows with a much lower numerical diffusion, even in the presence of

a highly heterogeneous porous media.

The goals of this paper are (i) to discuss the coupling of NT and KT schemes

to velocity fields approximated by Raviart-Thomas mixed finite element method

(See [30]), and (ii) to compare the KT semi-discrete central scheme with the NT

central scheme for numerical simulations of two-phase, incompressible, two-

dimensional flows in heterogeneous formations. Both methods can accurately

resolve sharp fronts in the fluid saturations without introducing spurious oscil-

lations or excessive numerical diffusion.

Our numerical experiments indicate that the KT scheme is considerably less

diffusive, particularly in the presence of viscous fingers, which lead to strong

restrictions on the time step selection. On the other hand the KT scheme may

produce incorrect boundary behavior in a typical two-dimensional geometry used

in the study of porous media flows: the quarter of a five spot.

Numerous methods have been introduced to solve two-phase flow problems

in porous media. Among eulerian-lagrangian procedures we mention the Modi-

fied Method of Characteristics [25, 29], the Modified Method of Characteristics

with Adjusted Advection [22], the Locally Conservative Eulerian Lagrangian

Method [23] and Eulerian Lagragian Localized Adjoint Methods [26]. Addi-

tional techniques, to name just a few, include higher–order Godunov schemes

[10], the front-tracking method [7], the streamline method [32, 34] the streamline

upwind Petrov-Galerkin method (SUPG) [1, 4] and a second-order TVD-type

finite volume scheme [31] (this procedure aims at the modeling of flow through

geometrically complex geological reservoirs). Each of these procedures has ad-

vantages and disadvantages. We refer the reader to [28, 23] and references cited

there for a discussion of these methods.

We remark that central schemes are particularly interesting for the numeri-

cal simulation of multiphase flow problems in porous media because they have

been formulated to solve hyperbolic systems; this is not the case for several of

the procedures mentioned above, which have been developed only for scalar

equations.

Moreover these central schemes were also used to deal with many other ap-

plied problems: to solve Hamilton-Jacobi Equations (see [11] and [2]), to model
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the two-dimensional magnetohydrodynamics (MHD) equations and to study the

Orszag-Tang vortex system, which describes the transition to supersonic turbu-

lence for the equations of MHD in two space dimensions (see [9] and [20]),

to mention just a couple of them.

This paper is organized as follows. In Section 2, we discuss our strategy for

solving numerically the model for two-phase, immiscible and incompressible

displacement in heterogeneous porous media considered here. In Section 3, we

discuss the application of central differencing schemes to porous media flows.

In Section 4, we present the computational solutions for the model problem

considered here and our conclusions.

2 Numerical approximation of two-phase flows

We consider a model for two-phase immiscible and incompressible displace-

ment in heterogeneous porous media. The governing equations are strongly

nonlinear and lead to shock formation, and with or without diffusive terms they

are of practical importance in petroleum engineering [15, 24]. See also [21] and

the references therein for recent studies for the scale-up problem for such equa-

tions. The conventional theoretical description of two-phase flow in a porous

medium, in the limit of vanishing capillary pressure, is via Darcy’s law coupled

to the Buckley-Leverett equation. The two phases will be referred to as water

and oil, and indicated by the subscripts w and o, respectively. Without sources

or sinks and neglecting the effects of capillarity and gravity, these equations read

(See [15] for more details)

∇ ∙ v = 0, v = −λ(s)K (x)∇ p, (1)

∂s

∂t
+ ∇ ∙ ( f (s)v) = 0, (2)

Here, v is the total seepage velocity, s is the water saturation, K (x) is the absolute

permeability, and p is the pressure. The constant porosity has been scaled out

by a change of the time variable. The total mobility, λ(s), and water fractional

flow function, f (s), are defined in terms of the relative permeabilities kri (s) and

phase viscosities μi by

λ(s) =
krw(s)

μw

+
kro(s)

μo
, f (s) =

krw(s)/μw

λ(s)
.
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2.1 Operator splitting for two-phase flow

An operator splitting technique is employed for the computational solution of

the saturation equation (2) and the pressure equation (1) in which they are solved

sequentially with possibly distinct time steps. This splitting scheme has proved

to be computationally efficient in producing accurate numerical solutions for

two-phase flows. We refer the reader to [22] and references therein for more

details on the operator splitting technique; see also [16, 14, 17, 18] and [5] for

applications of this strategy to three phase flows taking into account capillary

pressure (diffusive effects).

Typically, for computational efficiency larger time steps are used for the

pressure-velocity calculation (Equation 1) than for the convection calculation

(Equation 2). Thus, we introduce two time steps: 1tc for the solution of the

hyperbolic problem for convection, and 1tp for the pressure-velocity calcula-

tion so that 1tp ≥ 1tc. We remark that in practice variable time steps are always

useful, especially for the convection micro-steps subject dynamically to a C F L

condition.

For the pressure solution we use a (locally conservative) hybridized mixed

finite element discretization equivalent to cell-centered finite differences [21,

22], which effectively treats the rapidly changing permeabilities that arise from

stochastic geology and produces accurate velocity fields. The pressure and

Darcy velocity are approximated at times tm = m1tp, m = 0, 1, 2, . . . .

The linear system resulting from the discretized equations is solved by a pre-

conditioned conjugate gradient procedure (PCG) (See [22] and the references

therein). The saturation equation is approximated at times tm
κ = tm + κ1tc for

tm < tm
κ ≤ tm+1. We remark that we must specify the water saturation at t = 0.

3 Central differencing schemes for porous media flows

In this section, we shall study the family of high resolution, non-oscillatory,

conservative central differencing schemes introduced by Nessyahu and Tadmor

(NT) and Kurganov and Tadmor (KT). They will be applied to the numerical

approximation of the scalar hyperbolic conservation law modeling the convec-

tive transport of fluid phases in two-phase flows. For the associated elliptic
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problem (Eq. (1)), we use the lowest order Raviart-Thomas [30] locally conser-

vative mixed finite elements. These central schemes enjoy the main advantage of

Godunov-type central schemes: simplicity, i.e., they employ neither characteris-

tic decomposition nor approximate Riemann solvers. This makes them universal

methods that can be applied to a wide variety of physical problems, including

hyperbolic systems. In the following sections we will discuss the main ideas of

the NT and KT central schemes coupled to the mixed finite element discretiza-

tion mentioned above. We will not repeat here all the details involved in the

development of the NT and KT schemes; instead, we refer the reader to [27] and

[3] for this material.

3.1 The Nessyahu-Tadmor scheme for two-phase flows

Consider the following scalar hyperbolic conservation law,

∂s

∂t
+

∂

∂x

(
xv f (s)

)
+

∂

∂y

(
yv f (s)

)
= 0, (3)

subject to prescribed initial data, s(x, y, 0) = S0(x, y). Here xv = xv(x, y, t)

and yv = yv(x, y, t) denote the x− and y−components of the velocity field v

(see Eq. 1). To approximate (3) by the NT scheme, we begin with a piecewise

constant solution of the form

∑

j,k

S
κ

j,kχ j,k(x, y), where S
κ

j,k := S
(
x j , yk, tm

κ

)

is the approximate cell average at t = tm
κ associated with the cell C j,k = I j×

Ik = [x j−1/2, x j+1/2]×[yk−1/2, yk+1/2] and χ j,k(x, y) is a characteristic function

of the cell C j,k .

We first reconstruct a piecewise linear approximation of the form

s
(
x, y, tm

κ

)
=

∑

j,k

S̃κ
j,k(x, y)χ j,k(x, y)

=
∑

j,k



S
κ

j,k +

(
Sκ

j,k

)́

1X
(x − x j ) +

(
Sκ

j,k

)̀

1Y
(y − yk)



 χ j,k(x, y)

x j−1/2 ≤ x ≤ x j+1/2, yk−1/2 ≤ y ≤ yk+1/2.

(4)
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In Eq. (4), the discrete slopes along the x and y directions satisfy

(
Sκ

j,k

)́

1X
=

∂

∂x
s(x = x j , y = yk, tκ) + O(1X) (5a)

(
Sκ

j,k

)̀

1Y
=

∂

∂y
s(x = x j , y = yk, tκ) + O(1Y ), (5b)

to guarantee second-order accuracy.

The reconstruction (4) retains conservation, i.e.:

1

1X1Y

∫ x j+1/2

x j−1/2

∫ yk+1/2

yk−1/2

S̃κ(x, y) dxdy = S
κ

j,k . (6)

Let
{
s(x, y, t), t ≥ tm

κ

}
be the exact solution of the conservation law (3), sub-

ject to the reconstructed piecewise-linear data (4) at time t = tm
κ . The evolution

step in the NT scheme consists of approximating this exact solution at the next

time step t = tm
κ + 1tc, by its averages over staggered cells, C j+1/2,k+1/2 :=

I j+1/2 × Ik+1/2. See dashed grid in Figure 1 (denote κ + 1 := tm
κ + 1 tc).

( , + )( − , + ) ( + , + )

( = , = ) ( = , = )

( = , = ) ( = , = )

( − , ) ( , ) ( + , )

( − , − ) ( , − ) ( + , − )

+ , +

Figure 1 – Evolution step at each time level tm
κ , tm < tm

κ ≤ tm+1, for the two-dimen-

sional NT central differencing scheme.
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Let

S
κ+1
j+ 1

2 ,k+ 1
2

=
1

1X1Y

∫

C j+1/2,k+1/2

s
(
x, y, tm

κ + 1tc
)

dxdy

=
1

1X1Y

∫ x j+1

x j

∫ yk+1

yk

s
(
x, y, tm

κ + 1tc
)

dxdy. (7)

x j ≤ x ≤ x j+1, yk ≤ y ≤ yk+1

These new staggered cell averages are obtained by integrating the conservation

law (3) over the control volumes C j+1/2,k+1/2 × [tm
κ , tm

κ + 1tc] following the

same manipulations as described in [19] (denote αx ≡ 1tc
1X and αy ≡ 1tc

1Y ):

S
κ+1
j+1/2,k+1/2 =

1

1X1Y

∫

C j+1/2,k+1/2

s
(
x, y, tm

κ + 1tc
)

dxdy

−
αx

1X1Y

{ ∫ tm
κ +1tc

tm
κ

∫ yk+1

yk

[
xv(x j+1, y, τ ) f (s(x j+1, y, τ )

− xv(x j , y, τ ) f (x j , y, τ )
]
dy dτ

}

−
αy

1X1Y

{ ∫ tm
κ +1tc

tm
κ

∫ x j+1

x j

[
yv(x, yk+1, τ ) f (s(x, yk+1, τ )

− yv(x, yk, τ ) f (x, yk, τ )
]
dx dτ

}
.

(8)

The cell average
∫

C j+1/2,k+1/2

s
(
x, y, tm

κ + 1tc
)

dxdy

has contributions from the four cells C j,k , C j+1,k , C j+1,k+1, and C j,k+1:
∫

C j+1/2,k+1/2

s
(
x, y, tm

κ

)
dxdy =

∫

C j+1/2,k+1/2∩C j,k

S̃κ
j,k(x, y) +

∫

C j+1/2,k+1/2∩C j,k+1

S̃κ
j,k+1(x, y)

+
∫

C j+1/2,k+1/2∩C j+1,k

S̃κ
j+1,k(x, y) +

∫

C j+1/2,k+1/2∩C j+1,k+1

S̃κ
j+1,k+1(x, y)

(9)
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Computing these integrals exactly yields

S
κ

j+ 1
2 ,k+ 1

2
=

1

4

(
S

κ

j,k + S
κ

j,k+1 + S
κ

j+1,k + S
κ

j+1,k+1

)

+
1

16

[(
Sκ

j,k

)́
+

(
Sκ

j,k+1

)́
−

(
Sκ

j+1,k

)́
−

(
Sκ

j+1,k+1

)́

+
(
Sκ

j,k

)̀
−

(
Sκ

j,k+1

)̀
+

(
Sκ

j+1,k

)̀
−

(
Sκ

j+1,k+1

)̀ ]
.

(10)

To approximate the four flux integrals on the right hand side of (8), we use the

second-order rectangular quadrature rule for the spatial integration and the mid-

point quadrature rule for second-order approximation of the temporal integrals.

For instance, letting κ + 1/2 be tm
κ + 1tc/2,

αx

1X1Y

∫ tm
κ +1tc

tm
κ

∫ yk+1

yk

xv(x j+1, y, τ ) f (s(x j+1, y, τ ))dy dτ

≈
αx

2

[
xv

κ+1/2
j+1,k f

(
sκ+1/2

j+1,k

)
+ xv

κ+1/2
j+1,k+1 f

(
sκ+1/2

j+1,k+1

)]
, (11a)

αy

1X1Y

∫ tm
κ +1tc

tm
κ

∫ x j+1

x j

yv(x, yk+1, τ ) f (s(x, yk+1, τ ))dy dτ

≈
αy

2

[
yv

κ+1/2
j,k+1 f

(
sκ+1/2

j,k+1

)
+ yv

κ+1/2
j+1,k+1 f

(
sκ+1/2

j+1,k+1

)]
. (11b)

Since these midvalues are computed at the center of the cells, C j,k , where the

solution is smooth, provided an appropriate CFL condition is observed, we can

use Taylor expansion together with the conservation law (3) to get

sκ+1/2
j,k = S

κ

j,k −
αx

2
xv

κ
j,k

(
f κ

j,k

)́
−

αy

2
yv

κ
j,k

(
f κ

j,k

)̀
. (12)

Here,
(

f κ
j,k

)́
and

(
f κ

j,k

)̀
are one-dimensional discrete slopes in the x and y

directions, respectively. They satisfy the conditions

(
f κ

j,k

)́

1X
=

∂

∂x
f
(
s(x = x j , y = yk, tκ)

)
+ O(1X) (13a)

(
f κ

j,k

)̀

1Y
=

∂

∂y
f
(
s(x = x j , y = yk, tκ)

)
+ O(1Y ), (13b)
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in order to produce a second order scheme for the approximation of (3). To avoid
spurious oscillations, it is essential to reconstruct the discrete derivatives given
by Equations (5) and (13) with built-in nonlinear limiters. In this work we use
the following MinMod limiter

(Sx )
κ
j,k ≈ MMθ

1

1x

{
S

κ

j−1,k, S
κ

j,k, S
κ

j+1,k

}

:= MM

(

θ
1Sκ

j+1/2,k

1x
,
1Sκ

j−1/2,k − 1Sκ
j+1/2,k

21x
, θ

1Sκ
j−1/2,k

1x

)

; (14a)

( fx )
κ
j,k ≈ MMθ

1

1x

{
f κ

j−1,k, f κ
j,k, f κ

j+1,k

}

:= MM

(

θ
1 f κ

j+1/2,k

1x
,
1 f κ

j−1/2,k − 1 f κ
j+1/2,k

21x
, θ

1 f κ
j−1/2,k

1y

)

, (14b)

where 1 is the centered difference, 1Sκ
j+1/2,k = S

κ

j+1,k − S
κ

j,k . We refer the

reader to [27] and [3] and the references therein for the various options for the

form of such discrete derivatives.

In our sequential scheme, when solving for the saturation in time, the total

velocity v is given by the solution of the velocity-pressure equation. Recall that

the solution of Eq. (1) is approximated the lowest order Raviart-Thomas mixed

finite element method. Thus, the computed total velocity v is discontinuous at

the vertices of the original non-staggered grid cells. This constitutes a difficulty

for the staggered scheme (8), which requires the values of the total velocity v

at these vertices at every other time step. To avoid this difficulty we use the

non-staggered version of the NT scheme.

To turn the staggered scheme (8) into a non-staggered scheme, we re-average

the reconstructed values of the underlying staggered scheme, thus recovering the

cell averages of the central scheme over the original non-staggered grid cells.

First we reconstruct a piecewise bilinear interpolant at the time step κ + 1 :=

tm
κ + 1tc

S̃κ+1
j+1/2,k+1/2(x, y) = S

κ+1
j+1/2,k+1/2 +

(Sκ+1
j+1/2,k+1/2)́

1X
(x − x j+1/2)

+

(
Sκ+1

j+1/2,k+1/2

)̀

1Y
(y − yk+1/2)

x j ≤ x ≤ x j+1, yk ≤ y ≤ yk+1,

(15)
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as in Equation (4), through the staggered cell averages given by (8), and re-

average it over the original grid cells, giving the following non-staggered scheme:

S
κ+1
j,k =

1

4

(
S

κ+1
j−1/2,k−1/2 + S

κ+1
j−1/2,k+1/2 + S

κ+1
j+1/2,k−1/2 + S

κ+1
j+1/2,k+1/2

)

+
1

16

[(
Sκ+1

j−1/2,k−1/2

)́
+

(
Sκ+1

j−1/2,k+1/2

)́

−
(
Sκ+1

j+1/2,k−1/2

)́
−

(
Sκ+1

j+1/2,k+1/2

)́ ]

+
1

16

[(
Sκ+1

j−1/2,k−1/2

)̀
−

(
Sκ+1

j−1/2,k+1/2

)̀

+
(
Sκ+1

j+1/2,k−1/2

)̀
−

(
Sκ+1

j+1/2,k+1/2

)̀ ]
.

3.2 The Kurganov-Tadmor scheme for two-phase flows

The first multidimensional extension of the KT scheme was presented in [3].

This extension used the dimension by dimension approach, that is, the numeri-

cal fluxes computed along the x and y directions are viewed as a generalization of

the one-spatial-dimension numerical fluxes. This approach consists of the fol-

lowing steps: at each time step tm
κ and at each cell I j,k ,

(i) Compute the difference of the one-dimensional numerical flux in one spa-

tial dimension in the x direction keeping y constant and equal to yk . Denote

this difference by

F x
j+1/2,k(t) :=

H x
j+1/2,k(t) − H x

j−1/2,k(t)

1X
.

The numerical flux H x
j+1/2,k(t) is

H x
j+1/2,k(t) :=

1

2

[
xv j+1/2,k(t) f

(
S+

j+1/2,k(t)
)

+ xv j+1/2,k(t) f
(
S−

j+1/2,k(t)
)]

−
ax

j+1/2,k(t)

2

[
S+

j+1/2,k(t) − S−
j+1/2,k(t)

]
,

(16)
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where

S+
j+1/2,k(t) = S̃ j+1,k(x j+1/2, yk, t)

= S j+1,k(t) −
1X

2
(Sx) j+1,k(t) and

S−
j+1/2,k(t) = S̃ j,k(x j+1/2, yk, t)

= S j,k(t) +
1X

2
(Sx) j,k(t)

(17)

are the corresponding right and left intermediate values of S̃(x, tκ) at

(x j+1/2, yk).

The local speed of wave propagation ax
j+1/2,k(t) is estimated at the cell

boundaries (x j+1/2, yk) as the upper bound

ax
j+1/2,k(t)=max

ω

{
|xv j+1/2,k(t) f ′(ω)|

}
, (18)

where ω is a value between S+
j+1/2,k(t) and S−

j+1/2,k(t). The velocity field

used in the KT scheme is obtained directly from the Raviart-Thomas

space on the cell edges:

xv j+1/2,k(t) := (vr ) jk(t),
xv j−1/2,k(t) := (vl) jk(t),

where vr and vl stand for the velocity on the one-dimensional “right” and

“left” faces of the cells.

(ii) Analogously, compute the difference of the one-dimensional numerical

flux in the y direction keeping x constant and equal to x j . This difference

is denoted by

F
y
j,k+1/2(t) :=

H y
j,k+1/2(t) − H y

j,k+1/2(t)

1Y
.

The one dimensional numerical flux in the y direction is

H y
j,k+1/2(t) :=

1

2

[
yv j,k+1/2(t) f

(
S+

j,k+1/2(t)
)

+ yv j,k+1/2(t) f
(
S−

j,k+1/2(t)
)]

−
ay

j,k+1/2(t)

2

[
S+

j,k+1/2(t) − S−
j,k+1/2(t)

]
.

(19)

Comp. Appl. Math., Vol. 28, N. 1, 2009



“main” — 2009/3/16 — 17:41 — page 99 — #13

E. ABREU, F. PEREIRA and S. RIBEIRO 99

In a similar way, the correspondent “up” and “down” intermediate values

of S̃(x, tκ) at (x j , yk+1/2) are

S+
j,k+1/2(t) = S j,k+1(t) −

1Y

2
(Sy) j,k+1(t) and

S−
j,k+1/2(t) = S j,k(t) +

1Y

2
(Sy) j,k(t).

The local speed of wave propagation ay
j,k+1/2(t) in the y direction is esti-

mated at the cell boundaries (x j , yk+1/2) as the upper bound

ay
j+1/2,k(t)=max

ω

{
|yv j+1/2,k(t) f ′(ω)|

}
, (20)

where ω is a value between S+
j,k+1/2(t) and S−

j,k+1/2(t). Analogously the

velocity field in the y direction is obtained directly from the Raviart-

Thomas space on the cell edges:

xv j,k+1/2(t) := (vu) jk(t),
xv j,k−1/2(t) := (vd) jk(t),

where vu and vd stand for the velocity on the “upper” and “lower” faces

of the cells.

(iii) The cell average S
κ+1
j,k in the next time step tm

κ + 1tc is then the solution

of the following differential equation

d

dt
S j,k(t) = −

(
F x

j+1/2,k(t) + F y
j,k+1/2(t)

)

= −
H x

j+1/2,k(t) − H x
j−1/2,k(t)

1X
(21)

−
H y

j,k+1/2(t) − H y
j,k+1/2(t)

1Y
,

The numerical derivatives are computed using the MinMod limiter given by

Equation (14). In our numerical experiments, the parameter θ assumes values

1 < θ < 1.8.

The two-dimensional semi-discrete formulation (21) comprises a system of

nonlinear ordinary differential equations for the discrete unknows {Sj,k(t)}. To

solve it, we integrate in time introducing a variable time step 1tn . Although the
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forward Euler scheme can be used, it may be advantageous to use higher order

discretizations in numerical simulations. The numerical examples presented

below use third-order Runge-Kutta ODE solvers based on convex combinations

of forward Euler steps. See [12] and [13] for more details on a whole family of

such schemes.

4 Two-dimensional numerical experiments

We present and compare the results of numerical simulations of two-dimensional,

two-phase flows associated with two distinct flooding problems using the KT and

NT schemes.

In all simulations, the reservoir contains initially 79% of oil and 21% of water.

Water is injected at a constant rate of 0.2 pore volumes every year. The viscosity

of oil and water used are μo = 10.0 cP and μw = 0.05 cP . The relative

permeabilities are assumed to be:

kro(s) =
(
1 − (1 − sro)

−1s
)2

, krw(s) =
(
1 − srw

)−2(
s − srw

)2
,

where sro = 0.15 and srw = 0.2 are the residual oil and water saturations,

respectively.

For the heterogeneous reservoir studies we consider a scalar absolute perme-

ability field K (x) taken to be log-normal (a fractal field, see [6] and [21] for

more details) with moderately large heterogeneity strength. The spatially vari-

able permeability field is defined on a 256×64 grid with three different values of

the coefficient of variation CV (CV = 0.5, 1.2, 2.2) given by the ratio between

the standard deviation and the mean value of the permeability field.

We now discuss the simulations in the slab geometry. We consider two-

dimensional flows in a rectangular, heterogeneous reservoir (slab geometry)

having 256m × 64m with three different sizes of computational grid: 256 × 64,

512 × 128 and 1024 × 256 cells. The boundary conditions and injection and

production specifications for the two-phase flow equations (1)-(2) are as fol-

lows. The injection is made uniformly along the left edge of the reservoir and

the production is taken along the right edge; no flow is allowed along the edges

appearing at the top and bottom of the reservoir.
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Figures 3, 4, and 5 refer to a comparative study of the NT and KT schemes,

showing the water saturation surface plots after 275, 250 and 225 days of sim-

ulation for the three different CV values (CV = 0.5, 1.2, and 2.2). The results

obtained with the NT scheme were computed using three computational grid:

the coarsest grid with 256 × 64 cells, and two levels of refinement denoted by

NTr and NTrr with 512 × 128 and 1024 × 256 cells, respectively (See the first

three pictures from top to bottom of Figures 3, 4, and 5). At the same time, the

bottom pictures in those figures are the results presented by the KT dimension

by dimension scheme on the coarsest computational grid of 256 × 64 cells.

Figure 2 – The numerical differences in L2 norm between the solution of the KT scheme

and the solutions of the NT scheme using three computional grids. As we refine the grid

of NT scheme, the differences become smaller.

For each heterogeneity, we computed the difference between the results pro-

duced by the NT scheme in the three computational grids with the corresponding

result produced by the KT scheme in the coarsest grid. We consider the solution

of the NT scheme in the finer grid as the reference solution. The differences are

then computed using the L2 norm relative to this reference solution as follows

numerical differences =
‖ F − G ‖2

‖ NTrr ‖2
. (22)

Here F stands for the KT solution and G for a NT solution. The graph in Figure 2

shows these differences. Note that as we refine the solution of the NT scheme, the

differences become smaller indicating a comparable accuracy for the simulations

produced by the KT scheme in the coarsest grid and the result produced by the
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Figure 3 – Water saturation surface plots after 275 days of simulation in a heterogeneous reservoir

having 256 m × 64 m, with CV = 0.5 and viscosity ratio 20. The first three pictures from top

to bottom used the NT scheme with grids having 256 × 64, 512 × 128 and 1024 × 256 cells,

repectively. The bottom picture shows the KT scheme with a grid of 256 × 64 cells.
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NT scheme in the finest grid. These differences indicate that one has to refine

twice the grid used in the NT scheme to produce an equivalent solution to the

one produced by the KT scheme using the coarsest grid.

We now turn to the discussion of the set of simulations performed in a five-spot

pattern. In case of a five-spot flood discretized by a diagonal grid (Figure 6),

injection takes place at one corner and production at the diametrically opposite

corner; no flow is allowed across the entirety of the boundary. In case of a

five-spot flood discretized by a parallel grid (Figure 7), injection takes place at

two opposite corners (say, bottom left and top right), and production is through

the remaining two corners (say, bottom right and top left). Figures 6 (diago-

nal grid) and 7 (parallel grid) show the saturation level curves after 260 days

of simulation obtained with the NT and KT schemes for two levels of spatial

discretization.

In both Figures 6 and 7, the pictures on the left column are the results obtained

with the NT scheme and the ones on the right were computed with the KT scheme.

In these Figures, the grids are refined from top to bottom and have 64 × 64 and

128 × 128 cells in the diagonal pattern and 90 × 90 and 180 × 180 cells in

the parallel grid.

It is clear that the KT scheme (right column pictures in Figure 6 and in

Figure 7) is producing incorrect boundary behavior. Moreover, as the com-

putational grid is refined (right column and bottom picture in Figures 6 and 7)

this problem seems to be emphasized.

5 Conclusions

In one spatial dimension the KT scheme is a small modification of the NT

scheme which uses more precise information about the local speed of propa-

gation. This approach leads to a very simple numerical recipe producing nu-

merical solutions more accurate then those provided by the NT scheme. On the

one hand, in two spatial dimensions the KT scheme uses numerical fluxes in

the x and y directions that can be viewed as generalizations of one-dimensional

numerical fluxes. This is called the dimension by dimension approach. The NT,

in the other hand, uses a genuinely two-dimensional configuration. In the case

of a slab geometry, the fluid flows mostly in one direction. For this reason, this
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Figure 4 – Water saturation surface plots after 250 days of simulation in a heterogeneous reservoir

having 256 m × 64 m, with CV = 1.2 and viscosity ratio 20. The first three pictures from top

to bottom used the NT scheme with grids having 256 × 64, 512 × 128 and 1024 × 256 cells,

repectively. The bottom picture shows the KT scheme with a grid of 256 × 64 cells.
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Figure 5 – Water saturation surface plots after 225 days of simulation in a heterogeneous reservoir

having 256 m × 64 m, with CV = 2.2 and viscosity ratio 20. The first three pictures from top

to bottom used the NT scheme with grids having 256 × 64, 512 × 128 and 1024 × 256 cells,

repectively. The bottom picture shows the KT scheme with a grid of 256 × 64 cells.
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(c) NT: 128×128 grid (d) KT: 128×128 grid

Figure 6 – Water saturation level curves for two-phase flows in a five-spot well config-

uration – diagonal grid.

flow may be viewed as a one-dimensional flow and the KT scheme is expected

to produce very accurate solutions like those presented in Figures 3, 4 and 5.

In the five-spot problem, the fluid flows in both x− and y−directions, causing

a genuinely two-dimensional displacement. The KT scheme produces incor-

rect boundary behaviors in the five-spot numerical examples. We remark that

this incorrect behavior is not present in the results produced by the NT scheme.
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(c) NT: 180×180 grid (d) KT: 180×180 grid

Figure 7 – Water saturation level curves for two-phase flows in a five-spot well config-

uration – parallel grid.

The dimension by dimension approach of the KT scheme might be a source

of numerical errors for a class of problems with an intrinsic two-dimensional

geometry. These numerical errors may lead to incorrect behavior like those in

the five-spot problem. The authors are currently working on an improvement of

these schemes in order to compute more precisely a genuinely two-dimensional

numerical flux.
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